Analysis of alcoholism data using support vector machines

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES

Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P

متن کامل

Unsupervised spatiotemporal fMRI data analysis using support vector machines

In this work we present a new support vector machine (SVM)-based method for fMRI data analysis. SVM has been shown to be a powerful, efficient data-driven tool in pattern recognition, and has been applied to the supervised classification of brain cognitive states in fMRI experiments. We examine the unsupervised mapping of activated brain regions using SVM. Specifically, the mapping process is f...

متن کامل

Data Classification using Support Vector Machines

Classifying data is a common task in machine learning. In machine learning, statistical classification is the problem of identifying the sub-population to which new observations belong on the basis of a training set of data containing observations whose sub-population is known. Therefore these classifications will show a variable behavior which can be studied by statistics. In machine learning,...

متن کامل

Using Support Vector Machines in Data Mining

Multivariate data analysis techniques have the potential to improve data analysis. Support Vector Machines (SVS) are a recent addition to the family of multivariate data analysis. A brief introduction to the SVM Vector Machines technique is followed by an outline of the practical application Key-Words: SVM vector machines, data analysis

متن کامل

Distributed Data Fusion Using Support Vector Machines

The basic quantity to be estimated in the Bayesian approach to data fusion is the conditional probability density function (CPDF). In recent times, computationally efficient particle filtering approaches are gaining growing importance in estimating these CPDF. In this approach, i.i.d samples are used to represent the conditional probability densities. However, their application in data fusion i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BMC Genetics

سال: 2005

ISSN: 1471-2156

DOI: 10.1186/1471-2156-6-s1-s136